Panda Python - Indicizzazione e selezione dei dati
In questo capitolo, discuteremo come suddividere la data e in generale ottenere il sottoinsieme di oggetti panda.
Gli operatori di indicizzazione Python e NumPy "[]" e l'operatore di attributo "." fornire un accesso rapido e semplice alle strutture dati di Panda in un'ampia gamma di casi d'uso. Tuttavia, poiché il tipo di dati a cui accedere non è noto in anticipo, l'utilizzo diretto di operatori standard presenta alcuni limiti di ottimizzazione. Per il codice di produzione, si consiglia di sfruttare i metodi di accesso ai dati panda ottimizzati spiegati in questo capitolo.
Panda ora supporta tre tipi di indicizzazione multiasse; i tre tipi sono menzionati nella tabella seguente -
Suor n | Indicizzazione e descrizione |
---|---|
1 | .loc() Basato su etichetta |
2 | .iloc() Basato su numeri interi |
3 | .ix() Sia basato su etichetta che su numero intero |
.loc ()
I panda forniscono vari metodi per avere puramente label based indexing. Quando si affetta, viene incluso anche il limite iniziale. I numeri interi sono etichette valide, ma si riferiscono all'etichetta e non alla posizione.
.loc() ha più metodi di accesso come -
- Una singola etichetta scalare
- Un elenco di etichette
- Un oggetto slice
- Un array booleano
locaccetta due operatori singoli / elenco / intervallo separati da ",". Il primo indica la riga e il secondo indica le colonne.
Esempio 1
#import the pandas library and aliasing as pd
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(8, 4),
index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D'])
#select all rows for a specific column
print df.loc[:,'A']
Suo output è il seguente -
a 0.391548
b -0.070649
c -0.317212
d -2.162406
e 2.202797
f 0.613709
g 1.050559
h 1.122680
Name: A, dtype: float64
Esempio 2
# import the pandas library and aliasing as pd
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(8, 4),
index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D'])
# Select all rows for multiple columns, say list[]
print df.loc[:,['A','C']]
Suo output è il seguente -
A C
a 0.391548 0.745623
b -0.070649 1.620406
c -0.317212 1.448365
d -2.162406 -0.873557
e 2.202797 0.528067
f 0.613709 0.286414
g 1.050559 0.216526
h 1.122680 -1.621420
Esempio 3
# import the pandas library and aliasing as pd
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(8, 4),
index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D'])
# Select few rows for multiple columns, say list[]
print df.loc[['a','b','f','h'],['A','C']]
Suo output è il seguente -
A C
a 0.391548 0.745623
b -0.070649 1.620406
f 0.613709 0.286414
h 1.122680 -1.621420
Esempio 4
# import the pandas library and aliasing as pd
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(8, 4),
index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D'])
# Select range of rows for all columns
print df.loc['a':'h']
Suo output è il seguente -
A B C D
a 0.391548 -0.224297 0.745623 0.054301
b -0.070649 -0.880130 1.620406 1.419743
c -0.317212 -1.929698 1.448365 0.616899
d -2.162406 0.614256 -0.873557 1.093958
e 2.202797 -2.315915 0.528067 0.612482
f 0.613709 -0.157674 0.286414 -0.500517
g 1.050559 -2.272099 0.216526 0.928449
h 1.122680 0.324368 -1.621420 -0.741470
Esempio 5
# import the pandas library and aliasing as pd
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(8, 4),
index = ['a','b','c','d','e','f','g','h'], columns = ['A', 'B', 'C', 'D'])
# for getting values with a boolean array
print df.loc['a']>0
Suo output è il seguente -
A False
B True
C False
D False
Name: a, dtype: bool
.iloc ()
I panda forniscono vari metodi per ottenere un'indicizzazione basata esclusivamente su numeri interi. Come Python e Numpy, questi sono0-based indicizzazione.
I vari metodi di accesso sono i seguenti:
- Un numero intero
- Un elenco di numeri interi
- Un intervallo di valori
Esempio 1
# import the pandas library and aliasing as pd
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D'])
# select all rows for a specific column
print df.iloc[:4]
Suo output è il seguente -
A B C D
0 0.699435 0.256239 -1.270702 -0.645195
1 -0.685354 0.890791 -0.813012 0.631615
2 -0.783192 -0.531378 0.025070 0.230806
3 0.539042 -1.284314 0.826977 -0.026251
Esempio 2
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D'])
# Integer slicing
print df.iloc[:4]
print df.iloc[1:5, 2:4]
Suo output è il seguente -
A B C D
0 0.699435 0.256239 -1.270702 -0.645195
1 -0.685354 0.890791 -0.813012 0.631615
2 -0.783192 -0.531378 0.025070 0.230806
3 0.539042 -1.284314 0.826977 -0.026251
C D
1 -0.813012 0.631615
2 0.025070 0.230806
3 0.826977 -0.026251
4 1.423332 1.130568
Esempio 3
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D'])
# Slicing through list of values
print df.iloc[[1, 3, 5], [1, 3]]
print df.iloc[1:3, :]
print df.iloc[:,1:3]
Suo output è il seguente -
B D
1 0.890791 0.631615
3 -1.284314 -0.026251
5 -0.512888 -0.518930
A B C D
1 -0.685354 0.890791 -0.813012 0.631615
2 -0.783192 -0.531378 0.025070 0.230806
B C
0 0.256239 -1.270702
1 0.890791 -0.813012
2 -0.531378 0.025070
3 -1.284314 0.826977
4 -0.460729 1.423332
5 -0.512888 0.581409
6 -1.204853 0.098060
7 -0.947857 0.641358
.ix ()
Oltre a puro basato su etichetta e intero, Pandas fornisce un metodo ibrido per le selezioni e il sottoinserimento dell'oggetto utilizzando l'operatore .ix ().
Esempio 1
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D'])
# Integer slicing
print df.ix[:4]
Suo output è il seguente -
A B C D
0 0.699435 0.256239 -1.270702 -0.645195
1 -0.685354 0.890791 -0.813012 0.631615
2 -0.783192 -0.531378 0.025070 0.230806
3 0.539042 -1.284314 0.826977 -0.026251
Esempio 2
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D'])
# Index slicing
print df.ix[:,'A']
Suo output è il seguente -
0 0.699435
1 -0.685354
2 -0.783192
3 0.539042
4 -1.044209
5 -1.415411
6 1.062095
7 0.994204
Name: A, dtype: float64
Uso delle notazioni
Ottenere valori dall'oggetto Panda con l'indicizzazione multi-assi utilizza la seguente notazione:
Oggetto | Indicizzatori | Tipo di ritorno |
---|---|---|
Serie | s.loc [indicizzatore] | Valore scalare |
DataFrame | df.loc [row_index, col_index] | Oggetto della serie |
Pannello | p.loc [item_index, major_index, minor_index] | p.loc [item_index, major_index, minor_index] |
Note − .iloc() & .ix() applica le stesse opzioni di indicizzazione e Valore restituito.
Vediamo ora come ogni operazione può essere eseguita sull'oggetto DataFrame. Useremo l'operatore di indicizzazione di base "[]" -
Esempio 1
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D'])
print df['A']
Suo output è il seguente -
0 -0.478893
1 0.391931
2 0.336825
3 -1.055102
4 -0.165218
5 -0.328641
6 0.567721
7 -0.759399
Name: A, dtype: float64
Note - Possiamo passare un elenco di valori a [] per selezionare quelle colonne.
Esempio 2
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D'])
print df[['A','B']]
Suo output è il seguente -
A B
0 -0.478893 -0.606311
1 0.391931 -0.949025
2 0.336825 0.093717
3 -1.055102 -0.012944
4 -0.165218 1.550310
5 -0.328641 -0.226363
6 0.567721 -0.312585
7 -0.759399 -0.372696
Esempio 3
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D'])
print df[2:2]
Suo output è il seguente -
Columns: [A, B, C, D]
Index: []
Accesso agli attributi
Le colonne possono essere selezionate utilizzando l'operatore di attributo ".".
Esempio
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(8, 4), columns = ['A', 'B', 'C', 'D'])
print df.A
Suo output è il seguente -
0 -0.478893
1 0.391931
2 0.336825
3 -1.055102
4 -0.165218
5 -0.328641
6 0.567721
7 -0.759399
Name: A, dtype: float64