NumPy - Iterazione su array

Il pacchetto NumPy contiene un oggetto iteratore numpy.nditer. È un efficiente oggetto iteratore multidimensionale che utilizza il quale è possibile iterare su un array. Ogni elemento di un array viene visitato utilizzando l'interfaccia Iterator standard di Python.

Creiamo un array 3X4 usando la funzione arange () e ripetiamo su di esso usando nditer.

Esempio 1

import numpy as np
a = np.arange(0,60,5)
a = a.reshape(3,4)

print 'Original array is:'
print a
print '\n'

print 'Modified array is:'
for x in np.nditer(a):
   print x,

L'output di questo programma è il seguente:

Original array is:
[[ 0 5 10 15]
 [20 25 30 35]
 [40 45 50 55]]

Modified array is:
0 5 10 15 20 25 30 35 40 45 50 55

Esempio 2

L'ordine di iterazione viene scelto in modo che corrisponda al layout di memoria di un array, senza considerare un ordine particolare. Questo può essere visto iterando sulla trasposizione dell'array sopra.

import numpy as np 
a = np.arange(0,60,5) 
a = a.reshape(3,4) 
   
print 'Original array is:'
print a 
print '\n'  
   
print 'Transpose of the original array is:' 
b = a.T 
print b 
print '\n'  
   
print 'Modified array is:' 
for x in np.nditer(b): 
   print x,

L'output del programma sopra è il seguente:

Original array is:
[[ 0 5 10 15]
 [20 25 30 35]
 [40 45 50 55]]

Transpose of the original array is:
[[ 0 20 40]
 [ 5 25 45]
 [10 30 50]
 [15 35 55]]

Modified array is:
0 5 10 15 20 25 30 35 40 45 50 55

Ordine di iterazione

Se gli stessi elementi vengono memorizzati utilizzando l'ordine in stile F, l'iteratore sceglie il modo più efficiente di iterare su un array.

Esempio 1

import numpy as np
a = np.arange(0,60,5)
a = a.reshape(3,4)
print 'Original array is:'
print a
print '\n'

print 'Transpose of the original array is:'
b = a.T
print b
print '\n'

print 'Sorted in C-style order:'
c = b.copy(order = 'C')
print c
for x in np.nditer(c):
   print x,

print '\n'

print 'Sorted in F-style order:'
c = b.copy(order = 'F')
print c
for x in np.nditer(c):
   print x,

Il suo output sarebbe il seguente:

Original array is:
[[ 0 5 10 15]
 [20 25 30 35]
 [40 45 50 55]]

Transpose of the original array is:
[[ 0 20 40]
 [ 5 25 45]
 [10 30 50]
 [15 35 55]]

Sorted in C-style order:
[[ 0 20 40]
 [ 5 25 45]
 [10 30 50]
 [15 35 55]]
0 20 40 5 25 45 10 30 50 15 35 55

Sorted in F-style order:
[[ 0 20 40]
 [ 5 25 45]
 [10 30 50]
 [15 35 55]]
0 5 10 15 20 25 30 35 40 45 50 55

Esempio 2

È possibile forzare nditer oggetto di utilizzare un ordine specifico menzionandolo esplicitamente.

import numpy as np 
a = np.arange(0,60,5) 
a = a.reshape(3,4) 

print 'Original array is:' 
print a 
print '\n'  

print 'Sorted in C-style order:' 
for x in np.nditer(a, order = 'C'): 
   print x,  
print '\n' 

print 'Sorted in F-style order:' 
for x in np.nditer(a, order = 'F'): 
   print x,

Il suo output sarebbe -

Original array is:
[[ 0 5 10 15]
 [20 25 30 35]
 [40 45 50 55]]

Sorted in C-style order:
0 5 10 15 20 25 30 35 40 45 50 55

Sorted in F-style order:
0 20 40 5 25 45 10 30 50 15 35 55

Modifica dei valori degli array

Il nditer oggetto ha un altro parametro opzionale chiamato op_flags. Il suo valore predefinito è di sola lettura, ma può essere impostato sulla modalità di lettura-scrittura o di sola scrittura. Ciò consentirà di modificare gli elementi dell'array utilizzando questo iteratore.

Esempio

import numpy as np
a = np.arange(0,60,5)
a = a.reshape(3,4)
print 'Original array is:'
print a
print '\n'

for x in np.nditer(a, op_flags = ['readwrite']):
   x[...] = 2*x
print 'Modified array is:'
print a

Il suo output è il seguente:

Original array is:
[[ 0 5 10 15]
 [20 25 30 35]
 [40 45 50 55]]

Modified array is:
[[ 0 10 20 30]
 [ 40 50 60 70]
 [ 80 90 100 110]]

Loop esterno

Il costruttore della classe nditer ha un'estensione ‘flags’ parametro, che può assumere i seguenti valori:

Sr.No. Parametro e descrizione
1

c_index

L'indice C_order può essere monitorato

2

f_index

L'indice di Fortran_order viene monitorato

3

multi-index

È possibile tenere traccia del tipo di indici con uno per iterazione

4

external_loop

Fa sì che i valori dati siano array unidimensionali con più valori invece di array a dimensione zero

Esempio

Nell'esempio seguente, gli array unidimensionali corrispondenti a ciascuna colonna vengono attraversati dall'iteratore.

import numpy as np 
a = np.arange(0,60,5) 
a = a.reshape(3,4) 

print 'Original array is:' 
print a 
print '\n'  

print 'Modified array is:' 
for x in np.nditer(a, flags = ['external_loop'], order = 'F'):
   print x,

L'output è il seguente:

Original array is:
[[ 0 5 10 15]
 [20 25 30 35]
 [40 45 50 55]]

Modified array is:
[ 0 20 40] [ 5 25 45] [10 30 50] [15 35 55]

Iterazione di trasmissione

Se due array sono broadcastable, un combinato nditerl'oggetto è in grado di iterare su di essi contemporaneamente. Supponendo che un arraya ha dimensione 3X4 e c'è un altro array b di dimensione 1X4, viene utilizzato l'iteratore del seguente tipo (array b viene trasmesso alla dimensione di a).

Esempio

import numpy as np 
a = np.arange(0,60,5) 
a = a.reshape(3,4) 

print 'First array is:' 
print a 
print '\n'  

print 'Second array is:' 
b = np.array([1, 2, 3, 4], dtype = int) 
print b  
print '\n' 

print 'Modified array is:' 
for x,y in np.nditer([a,b]): 
   print "%d:%d" % (x,y),

Il suo output sarebbe il seguente:

First array is:
[[ 0 5 10 15]
 [20 25 30 35]
 [40 45 50 55]]

Second array is:
[1 2 3 4]

Modified array is:
0:1 5:2 10:3 15:4 20:1 25:2 30:3 35:4 40:1 45:2 50:3 55:4