NumPy - Funzioni matematiche
Abbastanza comprensibilmente, NumPy contiene un gran numero di varie operazioni matematiche. NumPy fornisce funzioni trigonometriche standard, funzioni per operazioni aritmetiche, gestione di numeri complessi, ecc.
Funzioni trigonometriche
NumPy ha funzioni trigonometriche standard che restituiscono rapporti trigonometrici per un dato angolo in radianti.
Example
import numpy as np
a = np.array([0,30,45,60,90])
print 'Sine of different angles:'
# Convert to radians by multiplying with pi/180
print np.sin(a*np.pi/180)
print '\n'
print 'Cosine values for angles in array:'
print np.cos(a*np.pi/180)
print '\n'
print 'Tangent values for given angles:'
print np.tan(a*np.pi/180)
Ecco il suo output:
Sine of different angles:
[ 0. 0.5 0.70710678 0.8660254 1. ]
Cosine values for angles in array:
[ 1.00000000e+00 8.66025404e-01 7.07106781e-01 5.00000000e-01
6.12323400e-17]
Tangent values for given angles:
[ 0.00000000e+00 5.77350269e-01 1.00000000e+00 1.73205081e+00
1.63312394e+16]
arcsin, arcos, e arctanle funzioni restituiscono l'inverso trigonometrico di sin, cos e tan dell'angolo dato. Il risultato di queste funzioni può essere verificato danumpy.degrees() function convertendo i radianti in gradi.
Example
import numpy as np
a = np.array([0,30,45,60,90])
print 'Array containing sine values:'
sin = np.sin(a*np.pi/180)
print sin
print '\n'
print 'Compute sine inverse of angles. Returned values are in radians.'
inv = np.arcsin(sin)
print inv
print '\n'
print 'Check result by converting to degrees:'
print np.degrees(inv)
print '\n'
print 'arccos and arctan functions behave similarly:'
cos = np.cos(a*np.pi/180)
print cos
print '\n'
print 'Inverse of cos:'
inv = np.arccos(cos)
print inv
print '\n'
print 'In degrees:'
print np.degrees(inv)
print '\n'
print 'Tan function:'
tan = np.tan(a*np.pi/180)
print tan
print '\n'
print 'Inverse of tan:'
inv = np.arctan(tan)
print inv
print '\n'
print 'In degrees:'
print np.degrees(inv)
Il suo output è il seguente:
Array containing sine values:
[ 0. 0.5 0.70710678 0.8660254 1. ]
Compute sine inverse of angles. Returned values are in radians.
[ 0. 0.52359878 0.78539816 1.04719755 1.57079633]
Check result by converting to degrees:
[ 0. 30. 45. 60. 90.]
arccos and arctan functions behave similarly:
[ 1.00000000e+00 8.66025404e-01 7.07106781e-01 5.00000000e-01
6.12323400e-17]
Inverse of cos:
[ 0. 0.52359878 0.78539816 1.04719755 1.57079633]
In degrees:
[ 0. 30. 45. 60. 90.]
Tan function:
[ 0.00000000e+00 5.77350269e-01 1.00000000e+00 1.73205081e+00
1.63312394e+16]
Inverse of tan:
[ 0. 0.52359878 0.78539816 1.04719755 1.57079633]
In degrees:
[ 0. 30. 45. 60. 90.]
Funzioni per l'arrotondamento
numpy.around ()
Questa è una funzione che restituisce il valore arrotondato alla precisione desiderata. La funzione accetta i seguenti parametri.
numpy.around(a,decimals)
Dove,
Sr.No. | Parametro e descrizione |
---|---|
1 | a Dati in ingresso |
2 | decimals Il numero di decimali a cui arrotondare. Il valore predefinito è 0. Se negativo, il numero intero viene arrotondato alla posizione a sinistra del punto decimale |
Example
import numpy as np
a = np.array([1.0,5.55, 123, 0.567, 25.532])
print 'Original array:'
print a
print '\n'
print 'After rounding:'
print np.around(a)
print np.around(a, decimals = 1)
print np.around(a, decimals = -1)
Produce il seguente output:
Original array:
[ 1. 5.55 123. 0.567 25.532]
After rounding:
[ 1. 6. 123. 1. 26. ]
[ 1. 5.6 123. 0.6 25.5]
[ 0. 10. 120. 0. 30. ]
numpy.floor ()
Questa funzione restituisce il numero intero più grande non maggiore del parametro di input. Il pavimento delscalar x è il più largo integer i, tale che i <= x. Nota che in Python, la pavimentazione è sempre arrotondata da 0.
Example
import numpy as np
a = np.array([-1.7, 1.5, -0.2, 0.6, 10])
print 'The given array:'
print a
print '\n'
print 'The modified array:'
print np.floor(a)
Produce il seguente output:
The given array:
[ -1.7 1.5 -0.2 0.6 10. ]
The modified array:
[ -2. 1. -1. 0. 10.]
numpy.ceil ()
La funzione ceil () restituisce il limite massimo di un valore di input, cioè il limite massimo di scalar x è il più piccolo integer i, tale che i >= x.
Example
import numpy as np
a = np.array([-1.7, 1.5, -0.2, 0.6, 10])
print 'The given array:'
print a
print '\n'
print 'The modified array:'
print np.ceil(a)
Produrrà il seguente output:
The given array:
[ -1.7 1.5 -0.2 0.6 10. ]
The modified array:
[ -1. 2. -0. 1. 10.]