In questa lezione, risolviamo alcuni tipi di problemi in cui troviamo la lunghezza del lato di un poligono che ha lo stesso perimetro del poligono dato.

Consideriamo un esempio: un filo viene prima piegato a forma di rettangolo di lunghezza 13 cm e 5 cm. Quindi questo filo viene non piegato e rimodellato in un quadrato. Ora ci viene richiesto di trovare la lunghezza del lato di questo quadrato.

È chiaro che la lunghezza del filo è fissa. Il perimetro del rettangolo è il perimetro del quadrato. Quindi prima troviamo il perimetro di un dato rettangolo usando la formula 2 (l + w). Poiché il rettangolo viene rimodellato in un quadrato, il perimetro del quadrato è uguale al perimetro del rettangolo.

Poiché tutti i lati di un quadrato sono di uguale lunghezza,

Lunghezza del lato del quadrato = $ \ frac {Square \: perimeter} {4} $ = $ \ frac {2 (l + w)} {4} $

Se il rettangolo fosse rimodellato in un triangolo equilatero, il perimetro del triangolo sarebbe lo stesso del perimetro del rettangolo.

Poiché tutti i lati di un triangolo equilatero hanno la stessa lunghezza,

la lunghezza del lato del triangolo equilatero = $ \ frac {2 (l + w)} {3} $

Un filo viene prima piegato a forma di rettangolo con larghezza 7 cm e lunghezza 13 cm. Quindi il filo è non piegato e rimodellato in un quadrato. Qual è la lunghezza di un lato del quadrato?

Soluzione

Step 1:

Perimetro del rettangolo = 2 (7 + 13) = 40 cm

Step 2:

Perimetro del quadrato = 40 cm

Lunghezza del lato del quadrato = $ \ frac {40} {4} $ = 10 cm

Un filo viene prima piegato a forma di rettangolo con larghezza 12 cm e lunghezza 18 cm. Quindi il filo è non piegato e rimodellato in un triangolo. Qual è la lunghezza di un lato del triangolo, se tutti i suoi lati sono uguali?

Soluzione

Step 1:

Perimetro del rettangolo = 2 (12 + 18) = 60 cm

Step 2:

Perimetro del triangolo equilatero = 60 cm

Lunghezza del lato del triangolo equilatero = $ \ frac {60} {3} $ = 20 cm