Trasformazione 3D

Rotazione

La rotazione 3D non è la stessa della rotazione 2D. Nella rotazione 3D, dobbiamo specificare l'angolo di rotazione insieme all'asse di rotazione. Possiamo eseguire la rotazione 3D sugli assi X, Y e Z. Sono rappresentati nella forma a matrice come di seguito:

$$ R_ {x} (\ theta) = \ begin {bmatrix} 1 & 0 & 0 & 0 \\ 0 & cos \ theta & −sin \ theta & 0 \\ 0 & sin \ theta & cos \ theta & 0 \\ 0 & 0 & 0 & 1 \ \ \ end {bmatrix} R_ {y} (\ theta) = \ begin {bmatrix} cos \ theta & 0 & sin \ theta & 0 \\ 0 & 1 & 0 & 0 \\ −sin \ theta & 0 & cos \ theta & 0 \\ 0 & 0 & 0 & 1 \\ \ end {bmatrix} R_ {z} (\ theta) = \ begin {bmatrix} cos \ theta & −sin \ theta & 0 & 0 \\ sin \ theta & cos \ theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \ end {bmatrix} $$

La figura seguente spiega la rotazione sui vari assi:

Ridimensionamento

È possibile modificare le dimensioni di un oggetto utilizzando la trasformazione in scala. Nel processo di ridimensionamento, espandi o comprimi le dimensioni dell'oggetto. Il ridimensionamento può essere ottenuto moltiplicando le coordinate originali dell'oggetto per il fattore di scala per ottenere il risultato desiderato. La figura seguente mostra l'effetto del ridimensionamento 3D:

Nell'operazione di ridimensionamento 3D, vengono utilizzate tre coordinate. Supponiamo che le coordinate originali siano (X, Y, Z), i fattori di scala siano $ (S_ {X,} S_ {Y,} S_ {z}) $ rispettivamente e le coordinate prodotte siano (X ', Y' , Z '). Questo può essere rappresentato matematicamente come mostrato di seguito:

$ S = \ begin {bmatrix} S_ {x} & 0 & 0 & 0 \\ 0 & S_ {y} & 0 & 0 \\ 0 & 0 & S_ {z} & 0 \\ 0 & 0 & 0 & 1 \ end {bmatrix} $

P '= P ∙ S

$ [{X} '\: \: \: {Y}' \: \: \: {Z} '\: \: \: 1] = [X \: \: \: Y \: \: \: Z \: \: \: 1] \: \: \ begin {bmatrix} S_ {x} & 0 & 0 & 0 \\ 0 & S_ {y} & 0 & 0 \\ 0 & 0 & S_ {z} & 0 \\ 0 & 0 & 0 e 1 \ end {bmatrix} $

$ = [X.S_ {x} \: \: \: Y.S_ {y} \: \: \: Z.S_ {z} \: \: \: 1] $

Shear

Una trasformazione che inclina la forma di un oggetto è chiamata shear transformation. Come nel taglio 2D, possiamo inclinare un oggetto lungo l'asse X, l'asse Y o l'asse Z in 3D.

Come mostrato nella figura sopra, c'è una coordinata P. Puoi tranciarla per ottenere una nuova coordinata P ', che può essere rappresentata in forma di matrice 3D come sotto -

$ Sh = \ begin {bmatrix} 1 & sh_ {x} ^ {y} & sh_ {x} ^ {z} & 0 \\ sh_ {y} ^ {x} & 1 & sh_ {y} ^ {z} & 0 \\ sh_ {z} ^ {x} & sh_ {z} ^ {y} & 1 & 0 \\ 0 & 0 & 0 & 1 \ end {bmatrix} $

P '= P ∙ Sh

$ X '= X + Sh_ {x} ^ {y} Y + Sh_ {x} ^ {z} Z $

$ Y '= Sh_ {y} ^ {x} X + Y + sh_ {y} ^ {z} Z $

$ Z '= Sh_ {z} ^ {x} X + Sh_ {z} ^ {y} Y + Z $

Matrici di trasformazione

La matrice di trasformazione è uno strumento di base per la trasformazione. Una matrice con dimensioni nxm viene moltiplicata per la coordinata degli oggetti. Di solito per la trasformazione vengono utilizzate matrici 3 x 3 o 4 x 4. Ad esempio, considera la seguente matrice per varie operazioni.

$ T = \ begin {bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ t_ {x} & t_ {y} & t_ {z} & 1 \\ \ end {bmatrix} $ $ S = \ begin {bmatrix} S_ {x} & 0 & 0 & 0 \\ 0 & S_ {y} & 0 & 0 \\ 0 & 0 & S_ {z} & 0 \\ 0 & 0 & 0 & 1 \ end {bmatrix} $ $ Sh = \ begin {bmatrix} 1 & sh_ {x} ^ {y} & sh_ {x} ^ {z} & 0 \\ sh_ {y} ^ {x} & 1 & sh_ {y} ^ {z} & 0 \\ sh_ {z} ^ {x} & sh_ {z} ^ {y} & 1 & 0 \\ 0 & 0 & 0 & 1 \ end {bmatrix} $
Translation Matrix Scaling Matrix Shear Matrix
$ R_ {x} (\ theta) = \ begin {bmatrix} 1 & 0 & 0 & 0 \\ 0 & cos \ theta & -sin \ theta & 0 \\ 0 & sin \ theta & cos \ theta & 0 \\ 0 & 0 & 0 & 1 \\ \ end {bmatrix} $ $ R_ {y} (\ theta) = \ begin {bmatrix} cos \ theta & 0 & sin \ theta & 0 \\ 0 & 1 & 0 & 0 \\ -sin \ theta & 0 & cos \ theta & 0 \\ 0 & 0 & 0 & 1 \\ \ end {bmatrix} $ $ R_ {z} (\ theta) = \ begin {bmatrix} cos \ theta & -sin \ theta & 0 & 0 \\ sin \ theta & cos \ theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \ end {bmatrix} $
Rotation Matrix